*****Last Ten Active Topic***


EXAM FOR SECTION A
project work 2018
AD302 material science summer 2018
Free download question paper of material science winter 2016
Notes for Pulse & Digital circuit
Free Download AMIE Section A study notes on AD 302
Result of lab and project
AMIE WINTER 2017 RESULT HAS BEEN DECLARED
Query related to re registration of section b
study notes

 

 

 

 

 

Registration Running on Online Classes for AMIE Summer 2018 Click Here to Register

Electronic Properties

Download excellent quality study note and ebooks of amie section a on Material Science in pdf,ppt,doc format

Electronic Properties

Postby raviraj » Thu Oct 18, 2012 11:04 pm

Magnetism - is a property of materials that respond to an applied magnetic field. Permanent magnets have persistent magnetic fields caused byferromagnetism. That is the strongest and most familiar type of magnetism. However, all materials are influenced varyingly by the presence of a magnetic field. Some are attracted to a magnetic field (paramagnetism); others are repulsed by a magnetic field (diamagnetism); others have a much more complex relationship with an applied magnetic field (spin glass behavior and antiferromagnetism). Substances that are negligibly affected by magnetic fields are known as non-magnetic substances. They include copper, aluminium, gases, and plastic. Pure oxygen exhibits magnetic properties when cooled to a liquid state.

Diamagnetism

Diamagnetism appears in all materials, and is the tendency of a material to oppose an applied magnetic field, and therefore, to be repelled by a magnetic field. However, in a material with paramagnetic properties (that is, with a tendency to enhance an external magnetic field), the paramagnetic behavior dominates.[8] Thus, despite its universal occurrence, diamagnetic behavior is observed only in a purely diamagnetic material. In a diamagnetic material, there are no unpaired electrons, so the intrinsic electron magnetic moments cannot produce any bulk effect. In these cases, the magnetization arises from the electrons' orbital motions, which can be understood classically as follows:
When a material is put in a magnetic field, the electrons circling the nucleus will experience, in addition to their Coulomb attraction to the nucleus, a Lorentz forcefrom the magnetic field. Depending on which direction the electron is orbiting, this force may increase the centripetal force on the electrons, pulling them in towards the nucleus, or it may decrease the force, pulling them away from the nucleus. This effect systematically increases the orbital magnetic moments that were aligned opposite the field, and decreases the ones aligned parallel to the field (in accordance with Lenz's law). This results in a small bulk magnetic moment, with an opposite direction to the applied field.
Note that this description is meant only as an heuristic; a proper understanding requires a quantum-mechanical description.
Note that all materials undergo this orbital response. However, in paramagnetic and ferromagnetic substances, the diamagnetic effect is overwhelmed by the much stronger effects caused by the unpaired electrons.

Paramagnetism

In a paramagnetic material there are unpaired electrons, i.e. atomic or molecular orbitals with exactly one electron in them. While paired electrons are required by the Pauli exclusion principle to have their intrinsic ('spin') magnetic moments pointing in opposite directions, causing their magnetic fields to cancel out, an unpaired electron is free to align its magnetic moment in any direction. When an external magnetic field is applied, these magnetic moments will tend to align themselves in the same direction as the applied field, thus reinforcing it

Ferromagnetism

A ferromagnet, like a paramagnetic substance, has unpaired electrons. However, in addition to the electrons' intrinsic magnetic moment's tendency to be parallel to an applied field, there is also in these materials a tendency for these magnetic moments to orient parallel to each other to maintain a lowered-energy state. Thus, even when the applied field is removed, the electrons in the material maintain a parallel orientation.
Every ferromagnetic substance has its own individual temperature, called the Curie temperature, or Curie point, above which it loses its ferromagnetic properties. This is because the thermal tendency to disorder overwhelms the energy-lowering due to ferromagnetic order.
Some well-known ferromagnetic materials that exhibit easily detectable magnetic properties (to form magnets) are nickel, iron, cobalt, gadolinium and theiralloys
raviraj
 
Posts: 14
Joined: Sun Aug 26, 2012 11:53 am

Return to Material Science (AD302)

Who is online

Registered users: Bing [Bot]